Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Điểm cực tiểu của đồ thị hàm số \(y = {x^3}-3x + 5\) là điểm

Câu hỏi số 213292:
Nhận biết

Điểm cực tiểu của đồ thị hàm số \(y = {x^3}-3x + 5\) là điểm

Đáp án đúng là: D

Quảng cáo

Câu hỏi:213292
Phương pháp giải

Với hàm số \(y = a{x^3} + bx + c\)

+ Tính \(y'\) ; giải phương trình \(y' = 0\) tìm \(2\) nghiệm \({x_1} < {x_2}\) (nếu có)

+ Với \(a > 0\), đồ thị hàm số có điểm cực đại \(\left( {{x_1};y\left( {{x_1}} \right)} \right)\) và điểm cực tiểu \(\left( {{x_2};y\left( {{x_2}} \right)} \right)\)

+ Với \(a < 0\), đồ thị hàm số có điểm cực tiểu \(\left( {{x_1};y\left( {{x_1}} \right)} \right)\) và điểm cực đại \(\left( {{x_2};y\left( {{x_2}} \right)} \right)\)

Giải chi tiết

Có \(y' = 3{x^2}-3 = 0 \Leftrightarrow x =  \pm 1\)

Vì hệ số của \({x^3}\) là dương nên đồ thị hàm số có điểm cực tiểu \(\left( {1;3} \right)\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com