Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) xác định là liên tục trên đoạn \(\left[ {0;\dfrac{7}{2}} \right]\),

Câu hỏi số 213317:
Thông hiểu

Cho hàm số \(y = f\left( x \right)\) xác định là liên tục trên đoạn \(\left[ {0;\dfrac{7}{2}} \right]\), có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Hỏi hàm số \(y = f\left( x \right)\) đạt GTNN trên đoạn \(\left[ {0;\dfrac{7}{2}} \right]\) tại điểm \({x_0}\) nào dưới đây?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:213317
Phương pháp giải

Phương pháp: Hàm số đạt cực trị tại điểm mà tại đó đạo hàm đổi dấu từ âm sang dương (điểm cực tiểu) hoặc từ dương sang âm (điểm cực đại)

Giải chi tiết

Cách giải:

Hàm số đã cho chỉ có điểm \({x_0} = 3\) là đạo hàm đổi dấu (từ âm sang dương) khi đi qua \({x_0}\), do đó \({x_0}\) là điểm cực tiểu và \(f\left( {{x_0}} \right)\) là GTNN của hàm số trên đoạn \(\left[ {0;\dfrac{7}{2}} \right]\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com