Trong tập các số phức, gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm của phương trình
Trong tập các số phức, gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm của phương trình \({{z}^{2}}-z+\frac{2017}{4}=0\) với \({{z}_{2}}\) có thành phần ảo dương. Cho số phức \(z\) thỏa mãn \(\left| z-{{z}_{1}} \right|=1.\) Giá trị nhỏ nhất của \(P=\left| z-{{z}_{2}} \right|\) là
Đáp án đúng là: A
Quảng cáo
Giả sử\(z=a+bi\,\,\left( a,b\in \mathbb{R} \right).\) Giả phương trình ban đầu để tìm được nghiệm \({{z}_{1}},{{z}_{2}}.\) Sử dụng giả thiết để đánh giá cho cho \(b.\) Đưa \({{\left| z-{{z}_{2}} \right|}^{2}}\) về một hàm cho \(b\) và sử dụng ước lượng cho \(b\) ở phần trước để tìm giá trị nhỏ nhất của \(P.\)
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












