Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong tập các số phức, gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm của phương trình

Câu hỏi số 213339:
Vận dụng

Trong tập các số phức, gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm của phương trình \({{z}^{2}}-z+\frac{2017}{4}=0\) với \({{z}_{2}}\) có thành phần ảo dương. Cho số phức \(z\) thỏa mãn \(\left| z-{{z}_{1}} \right|=1.\) Giá trị nhỏ nhất của \(P=\left| z-{{z}_{2}} \right|\) là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:213339
Phương pháp giải

Giả sử\(z=a+bi\,\,\left( a,b\in \mathbb{R} \right).\) Giả phương trình ban đầu để tìm được nghiệm \({{z}_{1}},{{z}_{2}}.\) Sử dụng giả thiết để đánh giá cho cho \(b.\) Đưa \({{\left| z-{{z}_{2}} \right|}^{2}}\) về một hàm cho \(b\) và sử dụng ước lượng cho \(b\) ở phần trước để tìm giá trị nhỏ nhất của \(P.\)

Giải chi tiết

Tính toán ta tìm được hai nghiệm \({{z}_{1}}=\frac{1-i\sqrt{2016}}{2},{{z}_{2}}=\frac{1+i\sqrt{2016}}{2}.\)

Giả sử \(z=a+bi\left( a,b\in R \right).\) Từ \(\left| z-{{z}_{1}} \right|=1\) ta suy ra

\(\begin{align} & \,\,\,\,\left| \left( a+bi \right)-\frac{1-i\sqrt{2016}}{2} \right|=1\Leftrightarrow 1={{\left( a-\frac{1}{2} \right)}^{2}}+{{\left( b+\frac{\sqrt{2016}}{2} \right)}^{2}}\Rightarrow {{\left( b+\frac{\sqrt{2016}}{2} \right)}^{2}}\le 1 \\ & \Rightarrow -1-\frac{\sqrt{2016}}{2}\le b\le 1-\frac{\sqrt{2016}}{2}\,\,\left( 1 \right). \\ \end{align}\)

Áp dụng \(\left( 1 \right)\) ta nhận được

\(\begin{array}{l}
{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\left| {z - {z_2}} \right|^2} = {\left| {\left( {a + bi} \right) - \frac{{1 + i\sqrt {2016} }}{2}} \right|^2} = {\left( {a - \frac{1}{2}} \right)^2} + {\left( {b - \frac{{\sqrt {2016} }}{2}} \right)^2}\\
= {\left( {a - \frac{1}{2}} \right)^2} + {\left( {b + \frac{{\sqrt {2016} }}{2}} \right)^2} - 4b\frac{{\sqrt {2016} }}{2} = 1 - 2b\sqrt {2016} \\
\ge 1 - 2\left( {1 - \frac{{\sqrt {2016} }}{2}} \right)\sqrt {2016} = 1 - 2\sqrt {2016} + 2016 = {\left( {\sqrt {2016} - 1} \right)^2}.
\end{array}\)

Do đó giá trị nhỏ nhất của \(P=\left| z-{{z}_{2}} \right|\) là \(\sqrt{2016}-1.\)

Đạt được khi và chỉ khi

\(b=1-\frac{\sqrt{2016}}{2},a=\frac{1}{2}.\)

Chọn đáp án A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com