Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Định m để phương trình \(m{{\sin }^{2}}2x-\left( 2m-3 \right)\sin 2x-3\left( m-1 \right)=0,\) có nghiệm

Câu hỏi số 214955:
Nhận biết

Định m để phương trình \(m{{\sin }^{2}}2x-\left( 2m-3 \right)\sin 2x-3\left( m-1 \right)=0,\) có nghiệm thỏa mãn \(-\frac{\pi }{2}<x<\frac{\pi }{2}\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:214955
Phương pháp giải

Xét hai trường hợp khi m = 0 và \(m\ne 0\)

- Khi m = 0 thì phương trình là phương trình cơ bản của sin2x. Biện luận để phương trình có nghiệm thỏa mãn yêu cầu.

- Khi \(m\ne 0\) thì phương trình là phương trình bậc hai của sin2x. Đặt sin2x = t, lưu ý điều kiện của t sau đó biện luận để phương trình có nghiệm thỏa mãn yêu cầu.

Giải chi tiết

Trường hợp 1: m = 0.

Khi đó phương trình có dạng \(3\sin 2x+3=0\Leftrightarrow \sin 2x=-1\Rightarrow 2x=-\frac{\pi }{2}+k2\pi \Leftrightarrow x=-\frac{\pi }{4}+k\pi \,\,\left( k\in Z \right)\)

\(-\frac{\pi }{2}<x<\frac{\pi }{2}\Leftrightarrow -\frac{\pi }{2}<-\frac{\pi }{4}+k\pi <\frac{\pi }{2}\left( k\in Z \right)\Leftrightarrow -\frac{1}{4}<k<\frac{3}{4}\left( k\in Z \right)\Rightarrow k=0\) 

Do đó phương trình có nghiệm \(-\frac{\pi }{2}<x<\frac{\pi }{2}\) khi m = 0.

Trường hợp 2: \(m\ne 0\).

Khi đó phương trình có dạng \(m{{\sin }^{2}}2x-\left( 2m-3 \right)\sin 2x-3\left( m-1 \right)=0\).

Đặt sin2x = t

\( - \frac{\pi }{2} < x < \frac{\pi }{2} \Leftrightarrow  - \pi  < 2x < \pi  \Leftrightarrow  - 1 < \sin 2x < 1 \Leftrightarrow t \in \left( { - 1;1} \right),\) khi đó phương trình có dạng: 

\(\begin{array}{l}
m{t^2} - \left( {2m - 3} \right)t - 3\left( {m - 1} \right) = 0\,\,\left( {t \in \left( { - 1;1} \right)} \right)\\
\Leftrightarrow \left( {t + 1} \right)\left[ {mt - 3\left( {m - 1} \right)} \right] = 0\\
\Leftrightarrow \left[ \begin{array}{l}
t = - 1 \notin \left( {0;1} \right)\\
t = \frac{{3m - 3}}{m}
\end{array} \right. \Rightarrow \frac{{3m - 3}}{m} \in \left( { - 1;1} \right)\\
\Rightarrow \left\{ \begin{array}{l}
\frac{{3m - 3}}{m} > - 1\\
\frac{{3m - 3}}{m} < 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\frac{{3m - 3 + m}}{m} > 0\\
\frac{{3m - 3 - m}}{m} < 0
\end{array} \right.\left\{ \begin{array}{l}
\left[ \begin{array}{l}
m > \frac{3}{4}\\
m < 0
\end{array} \right.\\
0 < m < \frac{3}{2}
\end{array} \right. \Rightarrow \frac{3}{4} < m < \frac{3}{2}
\end{array}\)

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com