Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Trên AO lấy điểm I bất kì (I khác A và O).

Câu hỏi số 215012:
Vận dụng

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Trên AO lấy điểm I bất kì (I khác A và O). Thiết diện của hình chóp khi cắt bởi mp(P) qua I song song với SA và BD là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:215012
Phương pháp giải

Sử dụng tính chất: Nếu hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) có điểm chung M và lần lượt chứa hai đường thẳng song song d và d’ thì giao tuyến của \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) là đường thẳng đi qua M và song song với d và d’ để xác định thiết diện của mặt phẳng đi qua O và song song với SA và BC.

Giải chi tiết

 

Ta có: (P) và (ABCD) có điểm I chung. Hơn nữa:

\(\left( P \right)\parallel BD\subset \left( ABCD \right)\Rightarrow \) giao tuyến của (P) và (ABCD) là đường thẳng qua I và song song với BD cắt AB tại E và cắt AD tại F.

Suy ra EF // BD.

Mp(P) và (SAC) có điểm I chung. \(\left( P \right)\parallel SA\subset \left( SAC \right)\Rightarrow \) Giao tuyến của (P) và (SAC) là đường thẳng đi qua I và song song với SA cắt SC tại G.

Tương tự như vậy ta xác định được \(\begin{array}{l}\left( P \right) \cap \left( {SAB} \right) = EH\parallel SA\,\,\left( {H \in SB} \right)\\\left( P \right) \cap \left( {SAD} \right) = FJ\parallel SA\,\,\left( {J \in SD} \right)\end{array}\)

Vậy thiết diện là ngũ giác EFJGH.

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com