Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ \(Oxyz\), cho các điểm \(A(0; - 2; - 1)\) và \(B(1; - 1;2)\). Tọa độ

Câu hỏi số 216020:
Vận dụng

Trong không gian với hệ tọa độ \(Oxyz\), cho các điểm \(A(0; - 2; - 1)\) và \(B(1; - 1;2)\). Tọa độ điểm \(M\) thuộc đoạn thẳng \(AB\) sao cho \(MA = 2MB\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:216020
Phương pháp giải

Phương pháp: 

- Sử dụng công thức tính tọa độ vecto:

Cho hai điểm \(A({a_1};{a_2};{a_3})\) và \(B({b_1};{b_2};{b_3})\) ta có: \(\overrightarrow {AB} = ({b_1} - {a_1};{b_2} - {a_2};{b_3} - {a_3})\) 

- Cho hai vecto \(\overrightarrow {AB} = ({a_1};{a_2};{a_3})\) và \(\overrightarrow {CD} = ({b_1};{b_2};{b_3})\). Khi đó: \(\overrightarrow {AB} = k.\overrightarrow {CD} \Leftrightarrow \left\{ \begin{array}{l}{a_1} = k.{b_1}\\{a_2} = k.{b_2}\\{a_3} = k.{b_3}\end{array} \right.\) 

Giải chi tiết

Cách làm:

\(M\) thuộc đoạn thẳng \(AB\) sao cho \(MA = 2MB\) tức là ta có \(\overrightarrow {AM} = \dfrac{2}{3}\overrightarrow {AB} \)

Giả sử \(M(a;b;c)\), ta có:

\(\begin{array}{l}\overrightarrow {AM} = (a;b + 2;c + 1)\\\overrightarrow {AB} = (1;1;3)\end{array}\)

Do đó:

\(\overrightarrow {AM} = \dfrac{2}{3}\overrightarrow {AB} \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{2}{3}.1\\b + 2 = \dfrac{2}{3}.1\\c + 1 = \dfrac{2}{3}.3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{2}{3}\\b = - \dfrac{4}{3}\\c = 1\end{array} \right. \Rightarrow M\left( {\dfrac{2}{3}; - \dfrac{4}{3};1} \right)\)

Chú ý khi giải

Sai lầm thường gặp:

- Tính sai tọa độ các véc tơ.

- Áp dụng sai điều kiện để hai véc tơ cùng phương, cùng hướng.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com