Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ trục tọa độ \(Oxyz\), cho tam giác \(ABC\) với \(A\left( {1;2; - 1} \right)\),

Câu hỏi số 216027:
Vận dụng

Trong không gian với hệ trục tọa độ \(Oxyz\), cho tam giác \(ABC\) với \(A\left( {1;2; - 1} \right)\), \(\;B\left( {2;3; - 2} \right)\), \(C\left( {1;0;1} \right)\). Trong các điểm \(M(4;3; - 2),N( - 1; - 2;3)\) và \(P(0;-1;2)\), điểm nào là đỉnh thứ tư của hình bình hành có \(3\) đỉnh là \(A,B,C\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:216027
Phương pháp giải

Phương pháp: 

- Sử dụng công thức tính tọa độ vecto:

Cho hai điểm \(A({a_1};{a_2};{a_3})\) và \(B({b_1};{b_2};{b_3})\) ta có: \(\overrightarrow {AB} = ({b_1} - {a_1};{b_2} - {a_2};{b_3} - {a_3})\) 

- Cho hai vecto \(\overrightarrow {AB} = ({a_1};{a_2};{a_3})\) và \(\overrightarrow {CD} = ({b_1};{b_2};{b_3})\).

Khi đó: \(\overrightarrow {AB} = \overrightarrow {CD} \Leftrightarrow \left\{ \begin{array}{l}{a_1} = {b_1}\\{a_2} = {b_2}\\{a_3} = {b_3}\end{array} \right.\) 

Giải chi tiết

Cách làm:

Giả sử \(D(x;y;z)\) là đỉnh thứ tư của hình bình hành có \(3\) đỉnh là \(A,B,C\).

Khi đó ta có

\(\left[ \begin{array}{l}\overrightarrow {AD} = \overrightarrow {BC} \\\overrightarrow {DA} = \overrightarrow {BC} \\\overrightarrow {AB} = \overrightarrow {CD} \end{array} \right.\)

Ta có:

\(\begin{array}{l}\overrightarrow {BC} = ( - 1; - 3;3),\overrightarrow {AB} = (1;1; - 1)\\\overrightarrow {AD} = (x - 1;y - 2;z + 1)\\\overrightarrow {DA} = (1 - x;2 - y; - 1 - z)\\\overrightarrow {CD} = (x - 1;y;z - 1)\end{array}\)

TH1: \(\overrightarrow {AD} = \overrightarrow {BC} \Leftrightarrow \left\{ \begin{array}{l}x - 1 = - 1\\y - 2 = - 3\\z + 1 = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = - 1\\z = 2\end{array} \right. \Rightarrow D(0; - 1;2) \equiv P\)

TH2: \(\overrightarrow {DA} = \overrightarrow {BC} \Leftrightarrow \left\{ \begin{array}{l} - x + 1 = - 1\\ - y + 2 = - 3\\ - z - 1 = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 5\\z = - 4\end{array} \right. \Rightarrow D(2;5; - 4)\)

TH3: \(\overrightarrow {AB} = \overrightarrow {CD} \Leftrightarrow \left\{ \begin{array}{l}x - 1 = 1\\y = 1\\z - 1 = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\\z = 0\end{array} \right. \Rightarrow D(2;1;0) \Rightarrow D \)

Chú ý khi giải

Sai lầm thường gặp:

- Tính sai tọa độ các véc tơ.

- Áp dụng sai điều kiện để hai véc tơ bằng nhau.

- Chưa tìm được điều kiện để một tứ giác là hình bình hành.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com