Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và AC, E là điểm trên cạnh CD sao cho

Câu hỏi số 216509:
Thông hiểu

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và AC, E là điểm trên cạnh CD sao cho ED = 3EC. Thiết diện tạo bởi mp(MNE) và tứ diện ABCD là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:216509
Phương pháp giải

- Tìm thiết diện dựa vào các yếu tố song song.

Chứng minh thiết diện là hình thang mà không là hình bình hành.

Giải chi tiết

 

MN là đường trung bình của tam giác ABC nên MN // BC

Ta có: \(\left\{ \begin{array}{l}\left( {MNE} \right) \cap \left( {BCD} \right) = E\\\left( {MNE} \right) \supset MN\\\left( {BCD} \right) \supset BD\\MN\parallel BD\end{array} \right. \Rightarrow \) Giao tuyến của (MNE) và (BCD) là đường thẳng qua E và song song với MN và BC. Trong (BCD) qua E kẻ EF // BC \(\left( F\in BC \right)\).

\(\Rightarrow \left( MNE \right)\cap \left( BCD \right)=EF.\) Vậy thiết diện là MNEF có MN // EF \(\Rightarrow \) MNEF là hình thang.

Ta có: \(MN = \frac{1}{2}BC.\)       

\(\begin{array}{l}{\rm{EF}}\parallel {\rm{BC}} \Rightarrow \frac{{EF}}{{BC}} = \frac{{DE}}{{DC}} = \frac{3}{4} \Rightarrow EF = \frac{3}{4}BC\\ \Rightarrow MN \ne EF.\end{array}\)

Do đó MNEF chỉ là hình thang mà không là hình bình hành.

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com