Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Tính tổng \(S=1.2+2.3+.\text{ }.\text{ }.+(n-2)(n-1)+(n-1)n\) với mọi \(n\ge 2\)

Câu hỏi số 216538:
Thông hiểu

 Tính tổng \(S=1.2+2.3+.\text{ }.\text{ }.+(n-2)(n-1)+(n-1)n\) với mọi \(n\ge 2\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:216538
Phương pháp giải

- Dự đoán công thức.

- Chứng minh công thức dự đoán đó bằng phương pháp quy nạp.

Giải chi tiết

Khi n = 2 thì S = 1.2 = 2 \(=\frac{2\left( {{2}^{2}}-1 \right)}{3}\)

Khi n = 3 thì S = 1.2 + 2.3 = 8 \(=\frac{3\left( {{3}^{2}}-1 \right)}{3}\)

Khi n = 4 thì S = 1.2 +2.3 + 3.4 = 20\(=\frac{4\left( {{4}^{2}}-1 \right)}{3}\)

Dự đoán công thức: \(S=\frac{n\left( {{n}^{2}}-1 \right)}{3}\)

Ta chứng minh công thức trên đúng bằng phương pháp quy nạp.

Khi n = 2 thì công thức trên đúng.

Giả sử công thức trên đúng đến n = k, tứ là \(1.2+2.3+...+\left( k-1 \right)k=\frac{k\left( {{k}^{2}}-1 \right)}{3}\)

Ta chứng minh công thức trên đúng đến n = k + 1, tức là cần chứng minh

\(1.2+2.3+...+\left( k-1 \right)k+k\left( k+1 \right)=\frac{\left( k+1 \right)\left[ {{\left( k+1 \right)}^{2}}-1 \right]}{3}\)

Từ giả thiết quy nạp ta có :

\(\begin{array}{l}1.2 + 2.3 + ... + \left( {k - 1} \right)k + k\left( {k + 1} \right) = \frac{{k\left( {{k^2} - 1} \right)}}{3} + k\left( {k + 1} \right) = \frac{{k\left( {{k^2} - 1} \right) + 3k\left( {k + 1} \right)}}{3}\\ = \frac{{k\left( {k + 1} \right)\left( {k - 1} \right) + 3k\left( {k + 1} \right)}}{3} = \frac{{k\left( {k + 1} \right)\left( {k - 1 + 3} \right)}}{3} = \frac{{k\left( {k + 1} \right)\left( {k + 2} \right)}}{3}\\ = \frac{{\left( {k + 1} \right)\left( {{k^2} + 2k} \right)}}{3} = \frac{{\left( {k + 2} \right)\left[ {{{\left( {k + 1} \right)}^2} - 1} \right]}}{3}\end{array}\)

Vậy công thức trên đúng với n = k + 1 hay dự đoán ban đầu là đúng.

Vậy \(S = \frac{{n\left( {{n^2} - 1} \right)}}{3}\)

 

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com