Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho nửa đường tròn đường kính \(AB = 2R.\) Từ \(A\) và \(B\) kẻ hai tiếp tuyến \(Ax\) và \(By.\)

Câu hỏi số 219091:
Vận dụng

Cho nửa đường tròn đường kính \(AB = 2R.\) Từ \(A\) và \(B\) kẻ hai tiếp tuyến \(Ax\) và \(By.\) Qua điểm \(M\) thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến \(Ax,\,By\) lần lượt tại \(C\) và \(D.\) Khi đó độ dài \(AC + BD\) nhỏ nhất khi:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:219091
Phương pháp giải

Dùng tính chất hai tiếp tuyến cắt nhau để chứng minh \(AC + BD = CD\).

Chứng minh \(CD \ge AB \Rightarrow CD\min \) khi \(CD = AB\).

Giải chi tiết

Do \(CM,\,DM\) là các tiếp tuyến nên ta có \(MD = BD,\,\,CM = CA.\)

Từ đó \(CA + BD = CM + MD = CD.\)

Từ \(C\) hạ đường cao \(CH\) xuống \(BD.\)

Khi đó \(\Delta HCD\) vuông tại \(H,\) có \(CD\) là cạnh huyền và \(CH\) là cạnh góc vuông nên \(CD \ge CH.\) Mặt khác \(CH//BA\) và \(CA \bot CH,\,\,BH \bot CH\) nên \(CHBA\) là hình chữ nhật.

Do đó \(CH = BA.\)  Vì vậy \(CD \ge AB.\)

Do đó \(CA + BD\) nhỏ nhất khi và chỉ khi \(CA + BD = AB \Leftrightarrow CD = AB \Leftrightarrow CD = CH \Leftrightarrow CD//AB.\) Khi đó ta có \(ABDC\) là hình chữ nhật và do đó \(AC = BD.\) Mặt khác \(O\) là trung điểm \(AB\) nên \(M\) là trung điểm \(CD.\) Kéo theo \(CA = CM = MD = BD = R.\)

Chọn đáp án D.

Đáp án cần chọn là: D

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com