Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 2\). Tập nghiệm của bất phương trình \(f'\left( x

Câu hỏi số 219405:
Thông hiểu

Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 2\). Tập nghiệm của bất phương trình \(f'\left( x \right) > 0\)  là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:219405
Phương pháp giải

- Tính \(f'\left( x \right)\).

- Giải bất phương trình \(f'\left( x \right) > 0\), chú ý định lý dấu của tam thức bậc hai \(h\left( x \right) = a{x^2} + bx + c\): “Trong khoảng hai nghiệm thì h(x) trái dấu với \(a\), ngoài khoảng hai nghiệm thì h(x) cùng dấu với \(a\).

 

Giải chi tiết

Ta có: \(f'\left( x \right) = 3{x^2} - 6x\).

\(f'\left( x \right) > 0 \Leftrightarrow 3{x^2} - 6x > 0 \Leftrightarrow 3x\left( {x - 2} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 0\end{array} \right.\)

Vậy tập nghiệm của bpt \(f'\left( x \right) > 0\) là \(S = \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\).

Chú ý khi giải

HS thường nhầm lẫn định lý dấu của tam thức bậc hai và sẽ chọn đáp án D.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com