Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Cho bốn mệnh đề sau: 1) Nếu hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\)

Câu hỏi số 221664:
Thông hiểu

 Cho bốn mệnh đề sau:

1) Nếu hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) song song với nhau thì mọi đường thẳng nằm trong mặt phẳng \(\left( \alpha  \right)\) đều song song với \(\left( \beta  \right)\).

2) Hai đường thẳng nằm trên hai mặt phẳng song song thì song song với nhau.

3) Trong không gian hai đường thẳng không có điểm chung thì chéo nhau.

4) Có thể tìm được hai đường thẳng song song mà mỗi đường thẳng cắt đồng thời hai đường thẳng chéo nhau cho trước.

Trong các mệnh đề trên có bao nhiêu mệnh đề sai?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:221664
Giải chi tiết

Mệnh đề 1) : Đúng

Mệnh đề 2) : Sai, ví dụ: (với (P) // (Q), \(a\subset (P),\,\,b\subset (Q)\) nhưng a không song song b

 

Mệnh đề 3) : Sai (vì 2 đường thẳng đó còn có thể song song với nhau)

Mệnh đề 4) : Sai

Ta xét các đường thẳng a, b, x, y sao cho a // b, x và y là hai đường thẳng chéo nhau; các giao điểm I, J, K, L (như hình vẽ).

Do a//b nên đường thẳng a và đường thẳng b là đồng phẳng, tức là tồn tại mặt phẳng (P) nào đó chứa đồng thời cả hai đường thẳng này.

Khi đó, các giao điểm I, J, K, L nằm trong (P) (vì chúng thuộc a, b)

\( \Rightarrow \left\{ \begin{array}{l}x \subset (P)\\y \subset (P)\end{array} \right.\)

Mà trong một mặt phẳng, 2 đường thẳng phân biệt, hoặc là song song nhau, hoặc là cắt nhau

=> x và y không thể là hai đường thẳng chéo nhau ! (mâu thuẫn với giả thiết đã cho).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com