Cho các mệnh đề: 1) Hàm số \(y=f(x)\)có đạo hàm tại điểm \({{x}_{0}}\) thì nó liên tục tại
Cho các mệnh đề:
1) Hàm số \(y=f(x)\)có đạo hàm tại điểm \({{x}_{0}}\) thì nó liên tục tại \({{x}_{0}}\).
2) Hàm số \(y=f(x)\)có liên tục tại \({{x}_{0}}\) thì nó có đạo hàm tại điểm \({{x}_{0}}\).
3) Hàm số \(y=f(x)\)liên tục trên đoạn \(\left[ a;\,b \right]\) và \(f(a).f(b)<0\) thì phương trình \(f(x)=0\) có ít nhất 1 nghiệm trên khoảng \((a;b)\).
4) Hàm số \(y=f(x)\)xác định trên đoạn \(\left[ a;b \right]\) thì luôn tồn tại GTLN và GTNN trên đoạn đó,
Số mệnh đề đúng là:
Đáp án đúng là: B
Quảng cáo
Đối chiếu với định nghĩa, tính chất liên quan tới đạo hàm của hàm số, GTLN, GTNN của hàm số để xét tính đúng, sai.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












