Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh SA vuông góc với mặt phẳng đáy và

Câu hỏi số 221869:
Thông hiểu

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh SA vuông góc với mặt phẳng đáy và \(SA=2a\). Gọi M là trung điểm của SC. Tính cosin của góc \(\alpha \) là góc giữa đường thẳng BM và mặt phẳng (ABC).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:221869
Phương pháp giải

Phương pháp:

Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó

Giải chi tiết

Cách giải:

Gọi H là trung điểm của AC ta có HM // SA nên \(HM\bot \left( ABC \right)\), khi đó \(\left( MB;\left( ABC \right) \right)=\left( MB;HB \right)=\widehat{MBH}\)

Ta có : \(SC=\sqrt{4{{a}^{2}}+{{a}^{2}}}=a\sqrt{5}=SB\)

Xét tam giác SBC có

\(M{{B}^{2}}=\frac{S{{B}^{2}}+B{{C}^{2}}}{2}-\frac{S{{C}^{2}}}{4}=\frac{5{{a}^{2}}+{{a}^{2}}}{2}-\frac{5{{a}^{2}}}{4}=\frac{7{{a}^{2}}}{4}\Leftrightarrow BM=\frac{a\sqrt{7}}{2}\)

Tam giác ABC đều cạnh a nên \(BH=\frac{a\sqrt{3}}{2}\)

Xét tam giác vuông BHM có: \(\cos \widehat{MBH}=\frac{BH}{BM}=\frac{\frac{a\sqrt{3}}{2}}{\frac{a\sqrt{7}}{2}}=\frac{\sqrt{21}}{7}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com