Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Đồ thị hàm số \(y = \dfrac{{x - 3}}{{{x^2} + x - 2}}\) có bao nhiêu đường tiệm cận đứng?

Câu hỏi số 223029:
Nhận biết

Đồ thị hàm số \(y = \dfrac{{x - 3}}{{{x^2} + x - 2}}\) có bao nhiêu đường tiệm cận đứng?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:223029
Phương pháp giải

Đường thẳng \(x = {x_0}\) là tiệm cận đứng của đồ thị hàm phân thức \(y = \dfrac{{f\left( x \right)}}{{g\left( x \right)}}\) nếu \({x_0}\) là nghiệm của đa thức \(g\left( x \right)\) nhưng không phải nghiệm của đa thức \(f\left( x \right)\)

Giải chi tiết

Dễ thấy đa thức dưới mẫu có hai nghiệm \(x = 1\) và \(x =  - 2\) và hai nghiệm này đều không phải nghiệm của tử thức.

\( \Rightarrow \) Đồ thị hàm số đã cho có 2 tiệm cận đứng.

Chú ý khi giải

Trước khi kết luận có bao nhiêu tiệm cận đứng cần kiểm tra xem nghiệm của tử có trùng với nghiệm của mẫu không. Nếu có nghiệm \({x_1}\) là nghiệm của cả tử và mẫu thì đường \(x = {x_1}\)  không phải là tiệm cận đứng của đồ thị hàm số.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com