Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chữ nhật \(ABCD\) (thứ tự các đỉnh theo chiều ngược chiều kim đồng hồ) có tâm \(O\)

Câu hỏi số 225624:
Thông hiểu

Cho hình chữ nhật \(ABCD\) (thứ tự các đỉnh theo chiều ngược chiều kim đồng hồ) có tâm \(O\) và \(AB=a,BC=a\sqrt{3}\). Phép quay tâm \(O\) góc quay \(\alpha \left( {{0}^{0}}<\alpha <{{180}^{0}} \right)\) biến đoạn \(AC\) thành \(BD\). Góc \(\alpha \) có số đo là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:225624
Phương pháp giải

Xác định góc \(\alpha \) chính là góc \(\widehat{AOB}\), tính góc \(\widehat{AOB}\) sử dụng hệ thức lượng trong tam giác vuông.

Giải chi tiết

Quan sát hình vẽ ta thấy:

\({{Q}_{\left( O,\widehat{AOB} \right)}}\left( A \right)=B;{{Q}_{\left( O,\widehat{AOB} \right)}}\left( C \right)=D\Rightarrow {{Q}_{\left( O,\widehat{AOB} \right)}}\left( AC \right)=BD\)

Do đó góc \(\alpha \) chính là góc \(\widehat{AOB}\).

Xét tam giác \(ABC\) có \(AB=a;BC=a\sqrt{3}\Rightarrow \tan \widehat{CAB}=\frac{BC}{AB}=\sqrt{3}\Rightarrow \widehat{CAB}=\widehat{OAB}={{60}^{0}}\)

Suy ra \(\Delta OAB\) đều \(\Rightarrow \widehat{AOB}={{60}^{0}}\).

Vậy \(\alpha ={{60}^{0}}\)

Chú ý khi giải

HS cần xác định đúng hướng quay, chiều dương được quy ước là chiều ngược chiều kim đồng hồ để tránh chọn nhầm các đáp án còn lại.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com