Trong mặt phẳng tọa độ Oxy cho hình bình hành ABCD với \(A\left( {1;1} \right);B\left( {4;5} \right)\).
Trong mặt phẳng tọa độ Oxy cho hình bình hành ABCD với \(A\left( {1;1} \right);B\left( {4;5} \right)\). Tâm I của hình bình hành thuộc đường thẳng \(\left( \Delta \right):x + y + 3 = 0\). Tìm tọa độ nguyên của đỉnh C biết diện tích hình bình hành ABCD bằng 9.
Đáp án đúng là: B
Quảng cáo
+) Gọi \(C\left( {a;b} \right) \Rightarrow I\left( {\frac{{{x_A} + {x_C}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)
+) Tính \({S_{ABCD}} = CH.AB = d\left( {C;AB} \right).AB\)
Đáp án cần chọn là: B
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












