Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính\(\mathop {\lim }\limits_{x \to  - \infty } (x - 1)\sqrt {\dfrac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} \)

Câu hỏi số 227538:
Vận dụng

Tính\(\mathop {\lim }\limits_{x \to  - \infty } (x - 1)\sqrt {\dfrac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} \) bằng?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:227538
Phương pháp giải

- Đưa \(x - 1\) vào trong căn: \(x - 1 =  - \sqrt {{{(x - 1)}^2}} \,\,\,\,khi\,\,x \to  - \infty \)

- Chia cả tử và mẫu cho lũy thừa của \(x\) bậc cao nhất.

- Thay giới hạn .

Giải chi tiết

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - \infty } (x - 1)\sqrt {\dfrac{{{x^2}}}{{2{x^4} + {x^2} + 1}}}  = \mathop {\lim }\limits_{x \to  - \infty } \left[ { - \sqrt {\dfrac{{{x^2}{{(x - 1)}^2}}}{{2{x^4} + {x^2} + 1}}} } \right]\\ = \mathop {\lim }\limits_{x \to  - \infty } \left[ { - \sqrt {\dfrac{{{x^2}({x^2} - 2x + 1)}}{{2{x^4} + {x^2} + 1}}} } \right] = \mathop {\lim }\limits_{x \to  - \infty } \left[ { - \sqrt {\dfrac{{{x^4} - 2{x^3} + {x^2}}}{{2{x^4} + {x^2} + 1}}} } \right]\\ = \mathop {\lim }\limits_{x \to  - \infty } \left[ { - \sqrt {\dfrac{{1 - \dfrac{2}{x} + \dfrac{1}{{{x^2}}}}}{{2 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^4}}}}}} } \right] =  - \dfrac{{\sqrt 2 }}{2}\end{array}\)

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com