Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + x + 3}  - x}

Câu hỏi số 227539:
Vận dụng

Tính \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + x + 3}  - x} \right)\)bằng?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:227539
Phương pháp giải

- Nhân liên hợp để khử dạng \(\infty  - \infty \).

- Chia cả tử và mẫu cho lũy thừa của \(x\) bậc cao nhất.

- Thay giới hạn .

Giải chi tiết

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + x + 3}  - x} \right)\\ = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\left( {\sqrt {{x^2} + x + 3}  - x} \right)\left( {\sqrt {{x^2} + x + 3}  + x} \right)}}{{\left( {\sqrt {{x^2} + x + 3}  + x} \right)}}\\ = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{{x^2} + x + 3 - {x^2}}}{{\sqrt {{x^2} + x + 3}  + x}}\\ = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x + 3}}{{\sqrt {{x^2} + x + 3}  + x}}\\ = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{1 + \dfrac{3}{x}}}{{\sqrt {1 + \dfrac{1}{x} + \dfrac{3}{{{x^2}}}}  + 1}}\\ = \dfrac{{1 + 0}}{{\sqrt {1 + 0 + 0}  + 1}} = \dfrac{1}{2}\end{array}\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com