Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y={{x}^{3}}-3{{x}^{2}}+1\). Tích các giá trị cực đại và giá trị cực tiểu của hàm

Câu hỏi số 229760:
Nhận biết

Cho hàm số \(y={{x}^{3}}-3{{x}^{2}}+1\). Tích các giá trị cực đại và giá trị cực tiểu của hàm số bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:229760
Phương pháp giải

Tìm các giá trị cực đại và cực tiểu của hàm số:

- Bước 1: Tìm tập xác định của hàm số.

- Bước 2: Tính \(f'\left( x \right)\), tìm các điểm tại đó \(f'\left( x \right)=0\) hoặc không xác định.

- Bước 3: Lập bảng biến thiên và kết luận.

+ Tại các điểm mà đạo hàm đổi dấu từ âm sang dương thì đó là điểm cực tiểu của hàm số.

+ Tại các điểm mà đạo hàm đổi dấu từ dương sang âm thì đó là điểm cực đại của hàm số.

Giải chi tiết

TXĐ: \(D=R\).

Ta có: \(y={{x}^{3}}-3{{x}^{2}}+1\Rightarrow y'=3{{x}^{2}}-6x=0\Leftrightarrow 3x\left( x-2 \right)=0\Leftrightarrow \left[ \begin{align}  & x=0 \\  & x=2 \\ \end{align} \right.\)

Bảng biến thiên:

 

Quan sát bảng biến thiên ta thấy giá trị cực đại \({{y}_{CD}}=1\) và giá trị cực tiểu \({{y}_{CT}}=-3\).

Vậy tích \({{y}_{CD}}.{{y}_{CT}}=-3\).

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com