Cho \(a,\,b,\,c > 0;\,a + b + c = 3\). Giá trị lớn nhất của biểu thức \(S = \sqrt {3a + b} + \sqrt
Cho \(a,\,b,\,c > 0;\,a + b + c = 3\). Giá trị lớn nhất của biểu thức \(S = \sqrt {3a + b} + \sqrt {3b + c} + \sqrt {3c + a} \) là:
Đáp án đúng là: C
Quảng cáo
Để sử dụng được giả thiết a + b + c = 3, ta cần đánh giá làm mất từng dấu căn thức trong biểu thức S. Ta sử dụng bất đẳng thức \(\sqrt {ab} \le {{a + b} \over 2}\) như sau: \(\sqrt {3a + b} = {1 \over {\sqrt \alpha }}\sqrt {\left( {3a + b} \right).\alpha } = {1 \over {\sqrt \alpha }}.{{3a + b + \alpha } \over 2}\).
Dấu \('' = ''\) xảy ra khi \(3a + b = \alpha \)
Tương tự với \(\sqrt {3b + c} \) và \(\sqrt {3c + a} \)
Vấn đề đặt ra là làm thế nào ta tìm được hệ số \(\alpha \) ?
Dựa vào giả thiết \(a + b + c = 3\) và nhận xét biểu thức S có tính chất đối xứng đối với các biến \(a,b,c\) nên ta dự đoán dấu = xảy ra khi \(a = b = c = 1\).
Suy ra \(3a + b = 4\). Do đó \(\alpha = 4\).
Đáp án cần chọn là: C
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












