Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hai số thực dương \(a,\,\,b\) thỏa mãn \(a+b=1.\) Giá trị nhỏ nhất của biểu thức

Câu hỏi số 231684:
Nhận biết

Cho hai số thực dương \(a,\,\,b\) thỏa mãn \(a+b=1.\) Giá trị nhỏ nhất của biểu thức \(S=\frac{1}{a+1}+\frac{1}{b+1}\)  là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:231684
Phương pháp giải

Sử dụng bất đẳng thức: \(\frac{1}{a}+\frac{1}{b}\ge \frac{4}{a+b}\)với \(a,b\)là hai số dương.

Giải chi tiết

Với hai số thực dương \(a,b\)thỏa mãn \(a+b=1.\)Ta có: \(\frac{1}{a+1}+\frac{1}{b+1}\ge \frac{4}{a+1+b+1}=\frac{4}{3}\)

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com