Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(a,b,c\) là 3 số thực không âm thỏa mãn điều kiện \(a+b+c\le 1\). Giá trị nhỏ nhất của

Câu hỏi số 231685:
Nhận biết

Cho \(a,b,c\) là 3 số thực không âm thỏa mãn điều kiện \(a+b+c\le 1\). Giá trị nhỏ nhất của biểu thức \(S=\frac{1}{{{a}^{2}}+2bc}+\frac{1}{{{b}^{2}}+2ca}+\frac{1}{{{c}^{2}}+2ab}\)  là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:231685
Phương pháp giải

Sử dụng bất đẳng thức: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge \frac{9}{a+b+c}\)với \(a,b\)\(,c\)   là hai số dương.

Giải chi tiết

Với \(a,b,c\) là 3 số thực không âm thỏa mãn điều kiện \(a+b+c\le 1\)

Áp dụng bất đẳng thức: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge \frac{9}{a+b+c}\)

Ta có: \(\frac{1}{{{a}^{2}}+2bc}+\frac{1}{{{b}^{2}}+2ca}+\frac{1}{{{c}^{2}}+2ab}\ge \frac{9}{{{a}^{2}}+2bc+{{b}^{2}}+2ca+{{c}^{2}}+2ab}=\frac{9}{{{\left( a+b+c \right)}^{2}}}\)

Vì \(a+b+c\le 1\)nên \(\frac{9}{{{\left( a+b+c \right)}^{2}}}\ge 9\Rightarrow S\ge 9\)

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com