Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(a,b,c>0\) thỏa mãn:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\). Giá trị lớn nhất của biểu thức 

Câu hỏi số 231690:
Vận dụng

Cho \(a,b,c>0\) thỏa mãn:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\). Giá trị lớn nhất của biểu thức  \(P=\frac{1}{2a+b+c}+\frac{1}{2b+a+c}+\frac{1}{2c+a+b}\)  là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:231690
Phương pháp giải

Với \(a,b\)là hai số dương ta có bất đẳng thức: \(\frac{1}{a}+\frac{1}{b}\ge \frac{4}{a+b}\) hay \(\frac{1}{a+b}\le \frac{1}{4}\left( \frac{1}{a}+\frac{1}{b} \right)\)(*)

Giải chi tiết

Áp dụng bất đẳng thức (*) ta có: \(\frac{1}{2a+b+c}=\frac{1}{2a+\left( b+c \right)}\le \text{ }\frac{1}{4}\left( \frac{1}{2a}+\frac{1}{b+c} \right)=\frac{1}{8a}+\frac{1}{4}.\frac{1}{b+c}\) 

 Tiếp tục áp dụng bất đẳng thức (*) ta có: \(\frac{1}{b+c}\le \frac{1}{4}\left( \frac{1}{b}+\frac{1}{c} \right)\)

Từ đó, suy ra \(\frac{1}{2a+b+c}\le \frac{1}{8a}+\frac{1}{16}\left( \frac{1}{b}+\frac{1}{c} \right)\)

Tương tự ta có: \(\frac{1}{a+2b+c}\le \frac{1}{8b}+\frac{1}{16}\left( \frac{1}{a}+\frac{1}{c} \right);\,\,\frac{1}{a+b+2c}\le \frac{1}{8c}+\frac{1}{16}\left( \frac{1}{b}+\frac{1}{a} \right)\)

Cộng vế với vế ta có \(P=\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le \frac{1}{4}\left( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right)\)

Theo giả thiết \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\) nên ta có \(P\le 1\).

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com