Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tập xác định của hàm số \(y=\sqrt{\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}}\) là:

Câu 233794: Tập xác định của hàm số \(y=\sqrt{\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}}\) là:

A. \(D=\left[ -\frac{1}{3};3 \right]\)                                           

B. \(D=\left( -\infty ;-\frac{1}{3} \right]\cup \left[ 3;+\infty  \right)\)

C.  \(D=\left( -\frac{1}{3};3 \right)\)                                         

D.  \(D=\left( -\infty ;-\frac{1}{3} \right)\cup \left( 3;+\infty  \right)\)

Câu hỏi : 233794

Phương pháp giải:

Điều kiện xác định của hàm số là \(\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}\ge 0\) Giải bất phương trình \(\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}\ge 0\)

  • Đáp án : D
    (1) bình luận (0) lời giải

    Giải chi tiết:

    Điều kiện xác định của hàm số là \(\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}\ge 0\)

    Giải bất phương trình \(\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}\ge 0\)

    Vì \({{x}^{2}}+x+1={{\left( x+\frac{1}{2} \right)}^{2}}+\frac{3}{4}>0\)  nên ta có

    \(\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}\ge 0\Leftrightarrow \left| 2x-1 \right|-x-2>0\)

    TH1: Nếu \(2x-1\ge 0\Leftrightarrow x\ge \frac{1}{2}\) ta có \(\left| 2x-1 \right|-x-2>0\Leftrightarrow 2x-1-x-2>0\Leftrightarrow x-3>0\Leftrightarrow x>3\)(thỏa mãn điều kiện)

    TH2: Nếu \(2x-1<0\Leftrightarrow x<\frac{1}{2}\) ta có \(\left| 2x-1 \right|-x-2>0\Leftrightarrow -2x+1-x-2>0\Leftrightarrow -3x-1>0\Leftrightarrow x<-\frac{1}{3}\)(thỏa mãn điều kiện) 

    Kết hợp hai TH ta có tập nghiệm của bất phương trình là \(S=\left( -\infty ;-\frac{1}{3} \right)\cup \left( 3;+\infty  \right)\)

    Vậy tập xác định của hàm số là \(D=\left( -\infty ;-\frac{1}{3} \right)\cup \left( 3;+\infty  \right)\).

    Chọn D.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com