Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập xác định của hàm số \(y=\sqrt{\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}}\)

Câu hỏi số 233794:
Vận dụng cao

Tập xác định của hàm số \(y=\sqrt{\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}}\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:233794
Phương pháp giải

Điều kiện xác định của hàm số là \(\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}\ge 0\) Giải bất phương trình \(\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}\ge 0\)

Giải chi tiết

Điều kiện xác định của hàm số là \(\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}\ge 0\)

Giải bất phương trình \(\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}\ge 0\)

Vì \({{x}^{2}}+x+1={{\left( x+\frac{1}{2} \right)}^{2}}+\frac{3}{4}>0\)  nên ta có

\(\frac{{{x}^{2}}+x+1}{\left| 2x-1 \right|-x-2}\ge 0\Leftrightarrow \left| 2x-1 \right|-x-2>0\)

TH1: Nếu \(2x-1\ge 0\Leftrightarrow x\ge \frac{1}{2}\) ta có \(\left| 2x-1 \right|-x-2>0\Leftrightarrow 2x-1-x-2>0\Leftrightarrow x-3>0\Leftrightarrow x>3\)(thỏa mãn điều kiện)

TH2: Nếu \(2x-1<0\Leftrightarrow x<\frac{1}{2}\) ta có \(\left| 2x-1 \right|-x-2>0\Leftrightarrow -2x+1-x-2>0\Leftrightarrow -3x-1>0\Leftrightarrow x<-\frac{1}{3}\)(thỏa mãn điều kiện) 

Kết hợp hai TH ta có tập nghiệm của bất phương trình là \(S=\left( -\infty ;-\frac{1}{3} \right)\cup \left( 3;+\infty  \right)\)

Vậy tập xác định của hàm số là \(D=\left( -\infty ;-\frac{1}{3} \right)\cup \left( 3;+\infty  \right)\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com