Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm số hạng không chứa \(x\) trong khai triển \({{\left( 2x-\frac{1}{{{x}^{2}}} \right)}^{6}}\); \(x\ne

Câu hỏi số 234054:
Thông hiểu

Tìm số hạng không chứa \(x\) trong khai triển \({{\left( 2x-\frac{1}{{{x}^{2}}} \right)}^{6}}\); \(x\ne 0\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:234054
Phương pháp giải

Sử dụng khai triển nhị thức Newton \({{\left( x+y \right)}^{n}}=\sum\limits_{k=0}^{n}{C_{n}^{k}{{x}^{n-k}}{{y}^{k}}}\) và số hạng tổng quát \({{T}_{k+1}}=C_{n}^{k}{{x}^{n-k}}{{y}^{k}}\).

Giải chi tiết

Số hạng tổng quát \({{T}_{k+1}}=C_{6}^{k}{{(2x)}^{6-k}}{{(-\frac{1}{{{x}^{2}}})}^{k}}=C_{6}^{k}{{2}^{6-k}}.{{x}^{6-k}}.{{(-1)}^{k}}{{x}^{-2k}}=C_{6}^{k}{{.2}^{6-k}}.{{\left( -1 \right)}^{k}}.{{x}^{6-3k}}\).

Số hạng không chứa \(x\) ứng với \(6-3k=0\Leftrightarrow k=2\) .

\(\Rightarrow \) hệ số \(C_{6}^{2}{{2}^{4}}{{(-1)}^{2}}=240\).

Chọn B.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com