Tìm số hạng không chứa \(x\) trong khai triển \({{\left( 2x-\frac{1}{{{x}^{2}}} \right)}^{6}}\); \(x\ne
Tìm số hạng không chứa \(x\) trong khai triển \({{\left( 2x-\frac{1}{{{x}^{2}}} \right)}^{6}}\); \(x\ne 0\).
Đáp án đúng là: B
Quảng cáo
Sử dụng khai triển nhị thức Newton \({{\left( x+y \right)}^{n}}=\sum\limits_{k=0}^{n}{C_{n}^{k}{{x}^{n-k}}{{y}^{k}}}\) và số hạng tổng quát \({{T}_{k+1}}=C_{n}^{k}{{x}^{n-k}}{{y}^{k}}\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












