Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm họ nguyên hàm của hàm số \(f(x)={{\tan }^{5}}x\).

Câu hỏi số 234272:
Vận dụng

Tìm họ nguyên hàm của hàm số \(f(x)={{\tan }^{5}}x\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:234272
Giải chi tiết

\(I=\int{f(x)dx}=\int{{{\tan }^{5}}xdx}\). Đặt \(\tan \,x=t\Rightarrow \frac{dx}{{{\cos }^{2}}x}=dt\Rightarrow ({{\tan }^{2}}x+1)dx=dt\Rightarrow dx=\frac{dt}{{{t}^{2}}+1}\)

Khi đó:

\(\begin{array}{l}I = \int {{t^5}.\frac{{dt}}{{{t^2} + 1}}}  = \int {({t^3} - t + \frac{t}{{{t^2} + 1}})dt}  = \int {{t^3}dt}  - \int {tdt}  + \int {\frac{t}{{{t^2} + 1}}dt} \\ = \frac{1}{4}{t^4} - \frac{1}{2}{t^2} + \frac{1}{2}\int {\frac{{d({t^2} + 1)}}{{{t^2} + 1}}}  = \frac{1}{4}{t^4} - \frac{1}{2}{t^2} + \frac{1}{2}\ln \left| {{t^2} + 1} \right| + C\\ = \frac{1}{4}{\tan ^4}x - \frac{1}{2}{\tan ^2}x + \frac{1}{2}\ln \left( {{{\tan }^2}x + 1} \right) + C\\ = \frac{1}{4}{\tan ^4}x - \frac{1}{2}{\tan ^2}x + \frac{1}{2}\ln \left( {\frac{1}{{{{\cos }^2}x}}} \right) + C\\ = \frac{1}{4}{\tan ^4}x - \frac{1}{2}{\tan ^2}x - \ln \left| {\cos x} \right| + C\end{array}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com