Cho hai điểm \(A(3;0),B(0;4)\). Phương trình đường tròn (C) có bán kính nhỏ nhất nội tiếp tam
Cho hai điểm \(A(3;0),B(0;4)\). Phương trình đường tròn (C) có bán kính nhỏ nhất nội tiếp tam giác OAB là:
Đáp án đúng là: C
Quảng cáo
Đường tròn (C) nội tiếp tam giác OAB, suy ra \(\left( C \right)\)có bán kính nhỏ nhất và tiếp xúc \(\text{Ox},Oy,AB\)
\(\Rightarrow R=d\left( I,\text{Ox} \right)=d\left( I,Oy \right)=d(I,AB)\)
Áp dụng công thức tính khoảng cách từ điểm \(I({{x}_{0}};{{y}_{0}})\) đến \(\Delta :\text{ax+by+c=0}\)
\(d(I;\Delta )=\frac{\text{ }\!\!|\!\!\text{ a}{{\text{x}}_{0}}+b{{y}_{0}}+c|}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\)
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












