Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình chính tắc của elip có đỉnh là \(A(2;0)\) và đi qua \(M( - 1;{{\sqrt 3 } \over 2})\)

Câu hỏi số 239170:
Vận dụng

Phương trình chính tắc của elip có đỉnh là \(A(2;0)\) và đi qua \(M( - 1;{{\sqrt 3 } \over 2})\)  là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:239170
Phương pháp giải

Phương trình chính tắc của elip có dạng \({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\). Tìm \(a,b\).

Elip có 4 đỉnh là \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right),{B_1}\left( {0; - b} \right),{B_2}\left( {0;b} \right)\) Elip đi qua điểm \(M\left( {{x_0};{y_0}} \right)\) tức là ta có \({{x_0^2} \over {{a^2}}} + {{y_0^2} \over {{b^2}}} = 1\)
Giải chi tiết

Elip có đỉnh là \(A(2;0)\) suy ra \(a = 2\). Phương trình elip cần tìm có dạng  \({{{x^2}} \over 4} + {{{y^2}} \over {{b^2}}} = 1\)

Vì elip qua \(M( - 1;{{\sqrt 3 } \over 2})\) nên ta có \({1 \over 4} + {3 \over {4{b^2}}} = 1 \Leftrightarrow {b^2} = 1\)

Vậy elip có phương trình là \({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)

Đáp án: A

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com