Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình chính tắc của elip có  đi qua \(M(1;{2 \over {\sqrt 5 }})\), tiêu cự là 4 là:

Câu hỏi số 239171:
Thông hiểu

Phương trình chính tắc của elip có  đi qua \(M(1;{2 \over {\sqrt 5 }})\), tiêu cự là 4 là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:239171
Phương pháp giải

Phương trình chính tắc của elip có dạng \({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\). Tìm \(a,b\)

Elip có tiêu cự là \(2c\) Ta có hệ thức \({a^2} - {b^2} = {c^2}\) Elip đi qua điểm \(M\left( {{x_0};{y_0}} \right)\) tức là ta có \({{x_0^2} \over {{a^2}}} + {{y_0^2} \over {{b^2}}} = 1\)
Giải chi tiết

Phương trình elip cần tìm có dạng  \({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

Elip có tiêu cự là 4 suy ra \(2c = 4 \Leftrightarrow c = 2\). Mặt khác ta có: \({a^2} - {b^2} = {c^2} = 4\)

Vì elip qua \(M\left( {1;{2 \over {\sqrt 5 }}} \right)\) nên ta có \({1 \over {{a^2}}} + {4 \over {5{b^2}}} = 1\)

Ta có hệ phương trình \(\left\{ \matrix{  {a^2} - {b^2} = 4 \hfill \cr   {1 \over {{a^2}}} + {4 \over {5{b^2}}} = 1 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  {a^2} = 5 \hfill \cr   {b^2} = 1 \hfill \cr}  \right.\)

Vậy elip có phương trình là \({{{x^2}} \over 5} + {{{y^2}} \over 1} = 1\)

Đáp án: C

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com