Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số tiếp tuyến đi qua điểm \(A\left( {1; - 6} \right)\) của đồ thị hàm số \(y = {x^3} - 3x + 1\)

Câu hỏi số 240886:
Vận dụng

Số tiếp tuyến đi qua điểm \(A\left( {1; - 6} \right)\) của đồ thị hàm số \(y = {x^3} - 3x + 1\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:240886
Phương pháp giải

Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \({x_0}\,\,\left( d \right)\)

Cho \(A \in \left( d \right)\), tìm \({x_0}\), có bao nhiêu nghiệm \({x_0}\) thì có bấy nhiêu tiếp tuyến của đồ thị hàm số đi qua A.

Giải chi tiết

\(y' = 3{x^2} - 3\)

\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm \(\left( {{x_0};{y_0}} \right)\) là: \(y = \left( {3x_0^2 - 3} \right)\left( {x - {x_0}} \right) + x_0^3 - 3{x_0} + 1\,\,\left( d \right)\)

\(\eqalign{  & A \in d \Rightarrow  - 6 = \left( {3x_0^2 - 3} \right)\left( {1 - {x_0}} \right) + x_0^3 - 3{x_0} + 1\,\,\left( d \right)  \cr   &  \Leftrightarrow  - 6 = 3x_0^2 - 3x_0^3 - 3 + 3{x_0} + x_0^3 - 3{x_0} + 1  \cr   &  \Leftrightarrow  - 2x_0^3 + 3x_0^2 + 4 = 0 \Leftrightarrow {x_0} = 2 \cr} \)

Vậy số tiếp tuyến đi qua điểm \(A\left( {1; - 6} \right)\) của đồ thị hàm số \(y = {x^3} - 3x + 1\) là 1.

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com