Cho hàm số \(y=f(x)\) xác định trên R và có đạo hàm \(f'(x)\)thỏa mãn \(f'(x)=(1-x)(x+2)g(x)+2018\)
Cho hàm số \(y=f(x)\) xác định trên R và có đạo hàm \(f'(x)\)thỏa mãn \(f'(x)=(1-x)(x+2)g(x)+2018\) trong đó \(g(x)<0,\,\,\forall x\in R\). Hàm số \(y=f(1-x)+2018x+2019\) nghịch biến trên khoảng nào?
Đáp án đúng là: A
Quảng cáo
+) Công thức đạo hàm hàm hợp: \(y=f\left( u(x) \right)\,\,\Rightarrow \,\,y'=f'\left( u(x) \right).u'(x)\)
+) Hàm số \(y=f(x)\) nghịch biến trên khoảng D \(\Leftrightarrow f'(x)\le 0,\,\,\forall x\in D\) (\(f'(x)=0\) tại hữu hạn điểm \({{x}_{i}}\in D,\,\,i\in \overline{0;n}\)
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












