Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho elip \((E):\,\,{{{x^2}} \over {25}} + {{{y^2}} \over {16}} = 1\), biết \(M \in (E)\) sao cho \(M{F_1} = 3\).

Câu hỏi số 242870:
Nhận biết

Cho elip \((E):\,\,{{{x^2}} \over {25}} + {{{y^2}} \over {16}} = 1\), biết \(M \in (E)\) sao cho \(M{F_1} = 3\). Tọa độ điểm M là: 

Đáp án đúng là: C

Quảng cáo

Câu hỏi:242870
Phương pháp giải

Xác định các hệ số a, b, c.

Sử dụng công thức \(M{F_1} = a + {c \over a}{x_0}\)

Giải chi tiết

\((E):\,\,{{{x^2}} \over {25}} + {{{y^2}} \over {16}} = 1 \Rightarrow a = 5,\,\,b = 4\)

Mà \({a^2} - {b^2} = {c^2} \Rightarrow {c^2} = {5^2} - {4^2} = 9 \Rightarrow c = 3\)

Gọi \(M\left( {{x_0};{y_0}} \right) \in (E) \Rightarrow {{{x_0}^2} \over {25}} + {{{y_0}^2} \over {16}} = 1\)

\(M{F_1} = a + {c \over a}{x_0} = 5 + {3 \over 5}{x_0} = 3 \Rightarrow {x_0} =  - {{10} \over 3}\)

Ta có:  \({{{x_0}^2} \over {25}} + {{{y_0}^2} \over {16}} = 1 \Leftrightarrow {{{{\left( { - {{10} \over 3}} \right)}^2}} \over {25}} + {{{y_0}^2} \over {16}} = 1 \Leftrightarrow {y_0}^2 = {{80} \over 9} \Leftrightarrow {y_0} =  \pm {{4\sqrt 5 } \over 3}\)

Vậy, \(M\left( { - {{10} \over 3}; - {{4\sqrt 5 } \over 3}} \right)\) hoặc \(M\left( { - {{10} \over 3};{{4\sqrt 5 } \over 3}} \right)\).

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com