Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Trong không gian với hệ tọa độ \(Oxyz,\) cho đường thẳng \(\left( d

Câu hỏi số 243930:
Nhận biết

 Trong không gian với hệ tọa độ \(Oxyz,\) cho đường thẳng \(\left( d \right):\frac{x-4}{2}=\frac{y-1}{-\,1}=\frac{z}{1}.\) Đường thẳng \(\left( {{d}_{1}} \right)\) đi qua điểm \(A\left( 0;1;2 \right),\) \(\left( {{d}_{1}} \right)\) cắt và vuông góc với \(\left( d \right).\) \(\left( {{d}_{1}} \right)\) có phương trình là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:243930
Phương pháp giải

+) Gọi \(B=d\cap {{d}_{1}}\Rightarrow \) Tham số hóa tọa độ điểm B.

+) \(\Rightarrow \overrightarrow{AB}\) là 1 VTCP của đường thẳng d1.

+) \({{d}_{1}}\bot d\Rightarrow {{\overrightarrow{u}}_{{{d}_{1}}}}.{{\overrightarrow{u}}_{d}}=0\Rightarrow \overrightarrow{AB}.{{\overrightarrow{u}}_{d}}=0\)

Giải chi tiết

\({{\overrightarrow{u}}_{d}}=\left( 2;-1;1 \right)\)

Gọi \(B=\left( d \right)\cap \left( {{d}_{1}} \right)\Rightarrow B\left( 2t+4;1-t;t \right)\) suy ra \(\overrightarrow{AB}=\left( 2t+4;-\,t;t-2 \right).\)

Vì \(\left( {{d}_{1}} \right)\bot \left( d \right)\) suy ra \(\overrightarrow{AB}.{{\vec{u}}_{d}}=0\)\(\Leftrightarrow 2\left( 2t+4 \right)+t+t-2=0\Leftrightarrow t=-\,1.\)

Suy ra \(\overrightarrow{AB}=\left( 2;1;-\,3 \right).\) Vậy phương trình đường thẳng \(\left( {{d}_{1}} \right)\) là \(\left( {{d}_{1}} \right):\frac{x}{2}=\frac{y-1}{1}=\frac{z-2}{-\,3}.\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com