Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB = 3a, AD = CD = a. Mặt bên (SAB) là tam giác
Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB = 3a, AD = CD = a. Mặt bên (SAB) là tam giác cân tại S, SA = 2a. Mặt bên \(\left( \alpha \right)\) di động và song song với (SAB) đồng thời cắt các cạnh AD, BC, SC, SD theo thứ tự M, N, P, Q. Biết tứ giác MNPQ ngoại tiếp một đường tròn bán kính r. Tính r?
Đáp án đúng là: A
Quảng cáo
Dựng mặt phẳng \(\left( \alpha \right)\) thỏa mãn yêu cầu bài toán, chứng minh thiết diện MNPQ là hình thang cân.
Chứng minh để MNPQ ngoại tiếp được đường tròn thì MN + PQ = MQ + NP (*).
Đặt AM = x. Tính các cạnh của hình thang MNPQ theo x rồi thay vào (*) để tìm x.
Tính bán kính mặt cầu nội tiếp hình thang cân MNPQ.
Đáp án cần chọn là: A
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com














