Bất phương trình \(\sqrt{{{x}^{2}}-x-12}<x\) có tất cả bao nhiêu nghiệm nguyên trên \(\left[
Bất phương trình \(\sqrt{{{x}^{2}}-x-12}<x\) có tất cả bao nhiêu nghiệm nguyên trên \(\left[ -\,2018;2018 \right]\) ?
Đáp án đúng là: C
Quảng cáo
Áp dụng phương pháp giải bất phương trình chứa căn thức dạng \(\sqrt{f\left( x \right)}<g\left( x \right)\Leftrightarrow \left\{ \begin{align} g\left( x \right)>0 \\ f\left( x \right)\ge 0 \\ f\left( x \right)<{{g}^{2}}\left( x \right) \\ \end{align} \right.\)
Đáp án cần chọn là: C
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












