Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập nghiệm của bất phương trình \(2{{x}^{2}}+4x+3\sqrt{3-2x-{{x}^{2}}}>1\) có dạng \(S=\left[ a;b

Câu hỏi số 250900:
Thông hiểu

Tập nghiệm của bất phương trình \(2{{x}^{2}}+4x+3\sqrt{3-2x-{{x}^{2}}}>1\) có dạng \(S=\left[ a;b \right].\) Tính \(a-b.\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:250900
Phương pháp giải

Đặt ẩn phụ bằng căn, đưa về các dạng bất phương trình cơ bản

Giải chi tiết

Điều kiện: \(3-2x-{{x}^{2}}\ge 0\Leftrightarrow x\in \left[ -\,3;1 \right].\) Đặt \(t=\sqrt{3-2x-{{x}^{2}}}\ge 0\Leftrightarrow {{x}^{2}}+2x=3-{{t}^{2}}.\)

Khi đó, bất phương trình đã cho trở thành: \(2\left( 3-{{t}^{2}} \right)+3t>1\Leftrightarrow 2{{t}^{2}}-3t-5<0\Leftrightarrow -\,1<t<\frac{5}{2}.\)

Kết hợp điều kiện: \(t\ge 0,\) ta được \(0\le t<\frac{5}{2}\Leftrightarrow \sqrt{3-2x-{{x}^{2}}}<\frac{5}{2}\Leftrightarrow \left\{ \begin{align}  -\,3\le x\le 1 \\  4\left( 3-2x-{{x}^{2}} \right)<25 \\ \end{align} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - 3 \le x \le 1\\4{x^2} + 8x + 13 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 3 \le x \le 1\\4{\left( {x + 1} \right)^2} + 9 > 0\end{array} \right. \Leftrightarrow  - 3 \le x \le 1.\)

Vậy \(S=\left[ -\,3;1 \right]=\left[ a;b \right]\Rightarrow a-b=-\,4.\)

Chọn C

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com