Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y=\frac{x+m}{x-1}\) (m là tham số thực) thỏa mãn \(\underset{\left[ 2;4 \right]}{\mathop{\max

Câu hỏi số 252100:
Vận dụng

Cho hàm số \(y=\frac{x+m}{x-1}\) (m là tham số thực) thỏa mãn \(\underset{\left[ 2;4 \right]}{\mathop{\max }}\,y=\frac{2}{3}\). Mệnh đề nào dưới đây đúng?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:252100
Phương pháp giải

Hàm số bậc nhất trên bậc nhất \(y=\frac{ax+b}{cx+d}\,\,\,\left( ad-bc\ne 0 \right)\) luôn đơn điệu trên từng khoảng xác định của nó.

TH1: Hàm số đồng biến trên \(\left[ 2;4 \right]\Rightarrow \underset{\left[ 2;4 \right]}{\mathop{\max }}\,y=y(4)\)

TH2: Hàm số nghịch biến trên \(\left[ 2;4 \right]\Rightarrow \underset{\left[ 2;4 \right]}{\mathop{\max }}\,y=y(2)\)

Giải chi tiết

Tập  xác định: \(D=R\text{ }\!\!\backslash\!\!\text{ }\left\{ 1 \right\}\).

Ta có: \(y'=\frac{1.(-1)-1.m}{{{(x-1)}^{2}}}=\frac{-1-m}{{{(x-1)}^{2}}}\)

TH1: \(-1-m>0\Leftrightarrow m<-1\):

\(y'>0,\,\,\forall x\in \left[ 2;4 \right]\Rightarrow \)Hàm số đồng biến trên (2;4) \(\Rightarrow \underset{\left[ 2;4 \right]}{\mathop{\max }}\,y=y(4)=\frac{2}{3}\Rightarrow \frac{4+m}{4-1}=\frac{2}{3}\Leftrightarrow m=-2\,\,(TM)\)

 TH2: \(-1-m<0\Leftrightarrow m>-1\)

\(y'<0,\,\,\forall x\in \left[ 2;4 \right]\Rightarrow \)Hàm số nghịch biến trên (2;4) \(\Rightarrow \underset{\left[ 2;4 \right]}{\mathop{\max }}\,y=y(2)=\frac{2}{3}\Rightarrow \frac{2+m}{2-1}=\frac{2}{3}\Leftrightarrow m=-\frac{4}{3}\,\,(Loai)\)

Vậy, \(m=-2\).

Dựa vào các đáp án ta thấy chỉ có đáp án C thỏa mãn.

Chọn: C

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com