Cho mặt phẳng \(\left( P \right):\,\,x - 2y - 2z + 10 = 0\) và hai đường thẳng \({\Delta _1}:\,\,\frac{{x -
Cho mặt phẳng \(\left( P \right):\,\,x - 2y - 2z + 10 = 0\) và hai đường thẳng \({\Delta _1}:\,\,\frac{{x - 2}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\), \({\Delta _2}:\,\,\frac{{x - 2}}{1} = \frac{y}{1} = \frac{{z + 3}}{4}\). Mặt cầu \(\left( S \right)\) có tâm thuộc \({\Delta _1}\), tiếp xúc với \({\Delta _2}\) và mặt phẳng \(\left( P \right)\), có phương trình:
Đáp án đúng là: B
Quảng cáo
+) Tham số hóa tọa độ điểm I thuộc \({\Delta _1}\).
+) Mặt cầu \(\left( S \right)\) tiếp xúc với \({\Delta _2}\) và mặt phẳng \(\left( P \right)\) nên ta có \(d\left( {I;\left( P \right)} \right) = d\left( {I;{\Delta _2}} \right) = R\)
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












