Trong không gian Oxyz, cho điểm \(A\left( {3;0;2} \right)\) và mặt cầu \(\left( S \right):\,\,{x^2} + {\left(
Trong không gian Oxyz, cho điểm \(A\left( {3;0;2} \right)\) và mặt cầu \(\left( S \right):\,\,{x^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 25\). Phương trình mặt phẳng \(\left( \alpha \right)\) đi qua điểm A và cắt mặt cầu \(\left( S \right)\) theo một đường tròn bán kính nhỏ nhất là:
Đáp án đúng là: D
Quảng cáo
Chứng minh mặt phẳng \(\left( \alpha \right)\) luôn cắt mặt cầu \(\left( S \right)\) theo giao tuyến là 1 đường tròn.
\(\left( \alpha \right)\) luôn cắt \(\left( S \right)\) theo đường tròn \(\left( C \right)\) có bán kính \(r = \sqrt {{R^2} - {d^2}\left( {I;\left( \alpha \right)} \right)} \). Để bán kính r nhỏ nhất \( \Leftrightarrow d\left( {I;\left( \alpha \right)} \right)\) lớn nhất.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













