Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông  cạnh \(2a,\) cạnh bên \(SA\, = \,\sqrt 5 a,\)

Câu hỏi số 263357:
Thông hiểu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông  cạnh \(2a,\) cạnh bên \(SA\, = \,\sqrt 5 a,\) mặt bên \(SAB\) là tam giác cân đỉnh \(S\) và thuộc mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng \(AD\) và \(SC\) bằng

 

 

Đáp án đúng là: A

Quảng cáo

Câu hỏi:263357
Phương pháp giải

Đưa về khoảng cách từ điểm đến mặt phẳng (xác định mặt phẳng chứa đường thẳng này và song song với đường thẳng kia)

Lời giải:

Gọi \(H\) là trung điểm của \(AB \Rightarrow \,\,SH \bot AB\) mà \(\left( {SAB} \right) \bot \left( {ABCD} \right)\)

\(\Rightarrow \,\,SH\bot \left( ABCD \right)\Rightarrow \,\,SH\bot BC\) mà \(BC\bot AB\Rightarrow \,\,BC\bot \left( SAB \right).\)

Kẻ \(HK \bot SB\,\,\,\left( {K \in SB} \right) \Rightarrow \,\,HK \bot \left( {SBC} \right) \Rightarrow \,\,d\left( {H;\left( {SBC} \right)} \right) = HK.\)

Tam giác \(SBH\) vuông tại \(H,\) có \(HK = \frac{{SH.BH}}{{\sqrt {S{H^2} + B{H^2}} }} = \frac{{2a\sqrt 5 }}{5}.\)

Vậy \(d\left( {AD;SC} \right) = d\left( {A;\left( {SBC} \right)} \right) = 2\,\, \times \,\,d\left( {H;\left( {SBC} \right)} \right) = \frac{{4a\sqrt 5 }}{5}\).

Chọn A

 
Giải chi tiết

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com