Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz,\) cho mặt cầu \((S):{{(x-1)}^{2}}+{{(y-2)}^{2}}+{{(z+1)}^{2}}=6,\) tiếp xúc với hai

Câu hỏi số 263375:
Vận dụng

Trong không gian \(Oxyz,\) cho mặt cầu \((S):{{(x-1)}^{2}}+{{(y-2)}^{2}}+{{(z+1)}^{2}}=6,\) tiếp xúc với hai mặt phẳng \((P):x+y+2z\,+\,5=0,\,\,(Q):2x-y+z\,-\,5=0\) lần lượt tại các tiếp điểm \(A,\,\,B.\) Độ dài đoạn thẳng \(AB\) là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:263375
Phương pháp giải

Đưa về bài toán đường tròn tiếp xúc với hai đường thẳng cắt nhau, sử dụng bài toán hình phẳng lớp 9 để tìm AB thông qua dữ kiện góc

Giải chi tiết

 

Xét \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=6\) có tâm \(I\left( 1;2;-\,1 \right),\) bán kính \(R=\sqrt{6}.\)

Gọi \(M\) là giao điểm của \(\left( P \right)\) và \(\left( Q \right)\) sao cho \(MAIB\) đồng phẳng.

Ta có \(\cos \widehat{AMB}=\cos \widehat{\left( P \right);\left( Q \right)}=\frac{\left| {{{\vec{n}}}_{\left( P \right)}}.{{{\vec{n}}}_{\left( Q \right)}} \right|}{\left| {{{\vec{n}}}_{\left( P \right)}} \right|.\left| {{{\vec{n}}}_{\left( Q \right)}} \right|}=\frac{1}{2}\Rightarrow \,\,\widehat{AMB}={{60}^{0}}\Rightarrow \,\,\widehat{AIB}={{120}^{0}}.\)

Tam giác \(IAB\) cân tại \(I,\) có \(AB=\sqrt{I{{A}^{2}}+I{{B}^{2}}-2.IA.IB.\cos \widehat{AIB}}=3\sqrt{2}.\)

 

 

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com