Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({x^2} + 4x + m + 1 = 0\,\,\,(1)\) (với m là tham số). a) Giải phương trình (1) với m

Câu hỏi số 267492:
Vận dụng

Cho phương trình \({x^2} + 4x + m + 1 = 0\,\,\,(1)\) (với m là tham số).

a) Giải phương trình (1) với m = 2.

b) Tìm điều kiện của m để phương trình (1) có nghiệm.

c) Tìm tất cả các giá trị của m sao cho phương trình (1) có hai nghiệm \({x_1};{x_2}\) thỏa mãn điều kiện \(\frac{{{x_1} - 1}}{{2{x_2}}} - \frac{{{x_2} - 1}}{{2{x_1}}} =  - 3\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:267492
Phương pháp giải

a) Thay m = 2 và giải phương trình.

b) Điều kiện để phương trình bậc hai có nghiệm là \(\Delta ' \ge 0\).

c) Tìm điều kiện để phương trình bậc hai có 2 nghiệm phân biệt. Sử dụng hệ thức Vi-et.

Giải chi tiết

a) Giải phương trình (1) với m = 2.

Thay \(m = 2\) vào \((1)\): \({x^2} + 4x + 2 + 1 = 0 \Leftrightarrow {x^2} + 4x + 3 = 0\)

Ta có : \(a - b + c = 1 - 4 + 3 = 0\)

\( \Rightarrow \) Phương trình có hai nghiệm  \(\left\{ \begin{array}{l}{x_1} =  - 1\\{x_2} =  - 3\end{array} \right.\)

Vậy, với \(m = 2\) thì phương trình có hai nghiệm \({x_1} =  - 1,\,\,{x_2} =  - 3\).

b) Tìm điều kiện của m để phương trình (1) có nghiệm.

\(\Delta ' = {2^2} - (m + 1) = 4 - m - 1 = 3 - m\)

Để phương trình (1) có nghiệm thì \(\Delta ' \ge 0 \Leftrightarrow 3 - m \ge 0 \Leftrightarrow m \le 3\).

c) Tìm tất cả các giá trị của m sao cho phương trình (1) có hai nghiệm \({x_1};{x_2}\) thỏa mãn điều kiện \(\frac{{{x_1} - 1}}{{2{x_2}}} - \frac{{{x_2} - 1}}{{2{x_1}}} =  - 3\).

Để phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0 \Leftrightarrow 3 - m > 0 \Leftrightarrow m < 3\)

Áp dụng định lý Vi-et, ta có:  \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 4\\{x_1}{x_2} = m + 1\,\,\left( * \right)\end{array} \right.\)

\( \Rightarrow {x_2} =  - 4 - {x_1}\) . Thay vào \(\frac{{{x_1} - 1}}{{2{x_2}}} - \frac{{{x_2} - 1}}{{2{x_1}}} =  - 3\), ta có:

\(\begin{array}{l}\frac{{{x_1} - 1}}{{2\left( { - 4 - {x_1}} \right)}} - \frac{{ - 4 - {x_1} - 1}}{{2{x_1}}} =  - 3,\,\,\left( {{x_1} \ne 0,\,\,{x_1} \ne 4} \right)\\ \Leftrightarrow \frac{{{x_1} - 1}}{{2( - 4 - {x_1})}} - \frac{{ - 5 - {x_1}}}{{2{x_1}}} =  - 3\\ \Leftrightarrow \frac{{{x_1}\left( {{x_1} - 1} \right) - \left( { - 4 - {x_1}} \right)\left( { - 5 - {x_1}} \right)}}{{2{x_1}( - 4 - {x_1})}} =  - 3\\ \Leftrightarrow {x_1}\left( {{x_1} - 1} \right) - \left( {4 + {x_1}} \right)\left( {5 + {x_1}} \right) =  - 3.2{x_1}( - 4 - {x_1})\\ \Leftrightarrow x_1^2 - {x_1} - 20 - 4{x_1} - 5{x_1} - x_1^2 - 24{x_1} - 6x_1^2 = 0\\ \Leftrightarrow  - 6x_1^2 - 34{x_1} - 20 = 0\\ \Leftrightarrow 3x_1^2 + 17{x_1} + 10 = 0\\ \Leftrightarrow 3x_1^2 + 15{x_1} + 2{x_1} + 10 = 0\\ \Leftrightarrow 3{x_1}\left( {{x_1} + 5} \right) + 2\left( {{x_1} + 5} \right) = 0\\ \Leftrightarrow \left( {{x_1} + 5} \right)\left( {3{x_1} + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x_1} =  - 5\\{x_1} =  - \frac{2}{3}\end{array} \right.\end{array}\)

Với \({x_1} =  - 5 \Rightarrow {x_2} =  - 4 - {x_1} =  - 4 + 5 = 1\)

Thay vào (*) ta có \( - 5 = m + 1 \Leftrightarrow m =  - 6\,\,\left( {tm} \right)\)

Với \({x_1} =  - \frac{2}{3} \Rightarrow {x_2} =  - 4 - {x_1} =  - \frac{{10}}{3}\)

 Thay vào (*) ta có \(\frac{{20}}{9} = m + 1 \Leftrightarrow m = \frac{{11}}{9}\,\,\left( {tm} \right)\)

Vậy \(m =  - 6\) hoặc \(m = \frac{{11}}{9}\).

Đáp án cần chọn là: D

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com