Cho phương trình \({x^2} + 4x + m + 1 = 0\,\,\,(1)\) (với m là tham số). a) Giải phương trình (1) với m
Cho phương trình \({x^2} + 4x + m + 1 = 0\,\,\,(1)\) (với m là tham số).
a) Giải phương trình (1) với m = 2.
b) Tìm điều kiện của m để phương trình (1) có nghiệm.
c) Tìm tất cả các giá trị của m sao cho phương trình (1) có hai nghiệm \({x_1};{x_2}\) thỏa mãn điều kiện \(\frac{{{x_1} - 1}}{{2{x_2}}} - \frac{{{x_2} - 1}}{{2{x_1}}} = - 3\).
Đáp án đúng là: D
Quảng cáo
a) Thay m = 2 và giải phương trình.
b) Điều kiện để phương trình bậc hai có nghiệm là \(\Delta ' \ge 0\).
c) Tìm điều kiện để phương trình bậc hai có 2 nghiệm phân biệt. Sử dụng hệ thức Vi-et.
Đáp án cần chọn là: D
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










