Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

a) Rút gọn biểu thức \(P = \sqrt 3 \left( {\sqrt {12}  - 3} \right) + \sqrt {27} \) b) Tìm giá trị của m

Câu hỏi số 267747:
Vận dụng

a) Rút gọn biểu thức \(P = \sqrt 3 \left( {\sqrt {12}  - 3} \right) + \sqrt {27} \)

b) Tìm giá trị của m để đồ thị hàm số \(y = m{x^2}\) đi qua điểm \(A\left( {2;4} \right)\).

c) Giải phương trình \({x^2} - 6x + 5 = 0\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:267747
Phương pháp giải

a) Sử dụng hằng đẳng thức \(\sqrt {{A^2}}  = \left| A \right|\)

b) Thay tọa độ điểm A vào hàm số.

c) Đưa phương trình về dạng tích.

Giải chi tiết

a) Rút gọn biểu thức \(P = \sqrt 3 \left( {\sqrt {12}  - 3} \right) + \sqrt {27} \)

\(\begin{array}{l}P = \sqrt 3 \left( {\sqrt {12}  - 3} \right) + \sqrt {27} \\P = \sqrt 3 \left( {\sqrt {{2^2}.3}  - 3} \right) + \sqrt {{3^2}.3} \\P = \sqrt 3 \left( {2\sqrt 3  - 3} \right) + 3\sqrt 3 \\P = 6 - 3\sqrt 3  + 3\sqrt 3 \\P = 6\end{array}\)

b) Tìm giá trị của m để đồ thị hàm số \(y = m{x^2}\) đi qua điểm \(A\left( {2;4} \right)\).

Thay tọa độ điểm \(A\left( {2;4} \right)\) vào hàm số ta có \(4 = m{.2^2} \Leftrightarrow 4 = m.4 \Leftrightarrow m = 1\)

Vậy \(m = 1\), khi đó đồ thị hàm số có dạng \(y = {x^2}\) và đi qua điểm \(A\left( {2;4} \right)\).

c) Giải phương trình \({x^2} - 6x + 5 = 0\)

\(\begin{array}{l}\,\,\,\,\,\,\,{x^2} - 6x + 5 = 0\\ \Leftrightarrow {x^2} - x - 5x + 5 = 0\\ \Leftrightarrow x\left( {x - 1} \right) - 5\left( {x - 1} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 5\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {1;5} \right\}\) 

Đáp án cần chọn là: A

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com