Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):\;\;y = \frac{1}{2}{x^2}\) và đường thẳng
Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):\;\;y = \frac{1}{2}{x^2}\) và đường thẳng \(\left( d \right):\;\;y = x + m.\)
1) Vẽ \(\left( P \right)\) và \(\left( d \right)\) trên cùng một hệ trục tọa độ khi \(m = 2.\)
2) Định các giá trị của \(m\) để \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B.\)
3) Tìm giác trị của \(m\) để độ dài đoạn thẳng \(AB = 6\sqrt 2 .\)
Đáp án đúng là: A
Quảng cáo
1) Lập bảng giá trị mà các đồ thị hàm số đi qua sau đó vẽ hai đồ thị trên cùng một hệ trục tọa độ.
2) Để \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B\) thì phương trình hoành độ giao điểm của hai đồ thị có hai nghiệm phân biệt \( \Leftrightarrow \Delta > 0.\)
3) +) Áp dụng hệ thức Vi-ét \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)
+) Sử dụng công thức tính đoạn thẳng: \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} .\)
Đáp án cần chọn là: A
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










