Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {x + 9}  - 3}}{{{x^2} + x}}\) là

Câu hỏi số 270443:
Thông hiểu

Số tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {x + 9}  - 3}}{{{x^2} + x}}\) là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:270443
Phương pháp giải

Bước 1: Tìm ĐKXĐ

Bước 2: Sử dụng định nghĩa tiệm cận đứng.

+ \(x = {x_0}\) là tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu một trong các giới hạn sau được thỏa mãn

\(\mathop {\lim }\limits_{x \to x_o^ + } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_o^ - } f\left( x \right) =  + \infty ;\) \(\mathop {\lim }\limits_{x \to x_o^ + } f\left( x \right) =  - \infty ;\mathop {\lim }\limits_{x \to x_o^ - } f\left( x \right) =  - \infty .\)

Giải chi tiết

ĐK: \(x \ge  - 9;\,x \ne 0;x \ne  - 1\)

Ta có \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 9}  - 3}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to 0} \frac{{x + 9 - {3^2}}}{{x\left( {x + 1} \right)\left( {\sqrt {x + 9}  + 3} \right)}}\) \( = \mathop {\lim }\limits_{x \to 0} \frac{x}{{x\left( {x + 1} \right)\left( {\sqrt {x + 9}  + 3} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{1}{{\left( {x + 1} \right)\left( {\sqrt {x + 9}  + 3} \right)}} = \frac{1}{6}\)

Nên \(x = 0\) không là tiệm cận đứng của đồ thị hàm số.

Lại có \(\mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{\sqrt {x + 9}  - 3}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to  - {1^ + }} \left[ {\frac{1}{{\left( {x + 1} \right)}}\frac{{\sqrt {x + 9}  - 3}}{x}} \right] =  + \infty \)  nên \(x =  - 1\) là tiệm cận đứng của đồ thị hàm số.

Vậy đồ thị hàm số đã cho có một tiệm cận đứng.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com