Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho khối lăng trụ \(ABC.A'B'C',\) khoảng cách từ \(C\) đến đường thẳng \(BB'\) bằng \(\sqrt{5},\)

Câu hỏi số 272369:
Vận dụng

Cho khối lăng trụ \(ABC.A'B'C',\) khoảng cách từ \(C\) đến đường thẳng \(BB'\) bằng \(\sqrt{5},\) khoảng cách từ \(A\) đến các đường thẳng \(BB'\) và \(CC'\) lần lượt bằng \(1\) và \(2,\) hình chiếu vuông góc của \(A\) lên mặt phẳng \(\left( A'B'C' \right)\) là trung điểm \(M\) của \(B'C'\) và \(A'M=\sqrt{5}.\) Thể tích của khối lăng trụ đã cho bằng:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:272369
Phương pháp giải

Thể tích khối lăng trụ: \({{V}_{ABC.A'B'C'}}={{S}_{d}}.h.\)

Giải chi tiết

Qua \(M\) dựng mặt phẳng \(\left( P \right)\) vuông góc với \(AA'\) cắt các cạnh \(AA',\ BB',\ CC'\) lần lượt tại \(N,\ E,\ F.\)

Ta có: \(\left\{ \begin{align}  & AA'\bot NE\Rightarrow NE=d\left( E,\ AA' \right)=d\left( N,\ BB' \right)=d\left( A,\ BB' \right)=1. \\  & AA'\bot NF\Rightarrow NF=d\left( F,\ AA; \right)=d\left( N,\ CC' \right)=d\left( A,\ CC' \right)=2 \\  & AA'\bot \left( P \right)\Rightarrow CC'\bot \left( P \right)\Rightarrow CC'\bot EF\Rightarrow EF=d\left( E,\ CC' \right)=d\left( F,\ BB' \right)=d\left( C,\ BB' \right)=\sqrt{5}. \\ \end{align} \right.\)

Có: \(N{{E}^{2}}+N{{F}^{2}}=EF{{'}^{2}}\Rightarrow \Delta NEF\) vuông tại \(N.\)  (định lý Pi-ta-go đảo)

\(\Rightarrow MN=\frac{1}{2}EF=\frac{\sqrt{5}}{2}.\)Mà: \(\frac{ME}{MF}=\frac{MB'}{MC'}=1\Rightarrow ME=MF\) (định lý Ta-lét)\(\Rightarrow M\) là trung điểm của \(EF.\)

Xét tam giác \(AA'M\) vuông tại \(M\) ta có:

\(\frac{1}{M{{N}^{2}}}=\frac{1}{A{{M}^{2}}}+\frac{1}{A'{{M}^{2}}}\Leftrightarrow \frac{4}{5}=\frac{1}{A{{M}^{2}}}+\frac{1}{5}\Leftrightarrow AM=\frac{\sqrt{15}}{3}.\)

Ta có: \(\left\{ \begin{align}  & \left( P \right)\bot AA' \\  & \left( A'B'C' \right)\bot AM \\ \end{align} \right.\Rightarrow \angle \left( \left( P \right),\ \left( A'B'C' \right) \right)=\angle \left( AA',\ AM \right)=\angle A'MA.\)

\(\Rightarrow \cos A'MA=\frac{AM}{AA'}=\frac{\frac{\sqrt{15}}{3}}{\sqrt{5+\frac{5}{3}}}=\frac{1}{2}.\)

Ta thấy \(\Delta NEF\) là hình chiếu vuông góc của \(\Delta A'B'C'\) lên mặt phẳng \(\left( P \right).\)

\(\begin{align}  & \Rightarrow {{S}_{A'B'C'}}=\frac{{{S}_{NEF}}}{\cos A'MA}=\frac{\frac{1}{2}NE.NF}{\frac{1}{2}}=1.2=2. \\  & \Rightarrow {{V}_{ABC.A'B'C'}}={{S}_{A'B'C'}}.AM=2.\frac{\sqrt{15}}{3}=\frac{2\sqrt{15}}{3}. \\ \end{align}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com