Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc mặt phẳng \((ABC)\), tam giác \(ABC\) vuông tại \(B\). Biết

Câu hỏi số 279327:
Vận dụng

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc mặt phẳng \((ABC)\), tam giác \(ABC\) vuông tại \(B\). Biết \(SA = 2a,AB = a,BC = a\sqrt 3 \). Tính bán kính \(R\) của mặt cầu ngoại tiếp hình chóp đã cho.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:279327
Phương pháp giải

+) Xác định trục của mặt đáy (đường thẳng đi qua tâm đường tròn ngoại tiếp đáy và vuông góc với đáy).

+) Xác định đường trung trực của cạnh bên SA.

+) Xác định giao điểm của 2 đường thẳng trên, đó chính là tâm mặt cầu ngoại tiếp khối chóp.

+) Áp dụng định lí Pytago để tính bán kính mặt cầu.

Giải chi tiết

 

Gọi E, F, I lần lượt là trung điểm của AC, AB và SC ta có;

\(E\) là tâm đường tròn ngoại tiếp tam giác ABC (\(\Delta ABC\) vuông tại B)

\(IE//SA \Rightarrow IE \bot \left( {ABC} \right) \Rightarrow IA = IB = IC\,\,\left( 1 \right)\)

\(IF//AC \Rightarrow IF \bot SA \Rightarrow IS = IA\,\,\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow I\) là tâm mặt cầu ngoại tiếp khối chóp S.ABC và \(R = \frac{{SC}}{2}\)

Xét tam giác vuông ABC có: \(AC = \sqrt {{a^2} + 3{a^2}}  = 2a\)

Xét tam giác vuông SAC có: \(SC = \sqrt {4{a^2} + 4{a^2}}  = 2\sqrt 2 a\)

   

Vậy \(R = \frac{{2\sqrt 2 a}}{2} = a\sqrt 2 \).

Chọn đáp án C.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com