Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm giá trị lớn nhất M của hàm số \(y = 2\cos x - \sin \,x\).

.

Câu hỏi số 283201:
Thông hiểu

Tìm giá trị lớn nhất M của hàm số \(y = 2\cos x - \sin \,x\).

.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:283201
Phương pháp giải

\(\begin{array}{l}y = a\sin x + b\cos x = \sqrt {{a^2} + {b^2}} \left( {\frac{a}{{\sqrt {{a^2} + {b^2}} }}\sin x + \frac{b}{{\sqrt {{a^2} + {b^2}} }}\cos x} \right)\\ = \sqrt {{a^2} + {b^2}} \left( {\sin x\cos \alpha  + \cos x\sin \alpha } \right) = \sqrt {{a^2} + {b^2}} \sin \left( {x + \alpha } \right)\end{array}\)

Giải chi tiết

 

\(\begin{array}{l}y = 2\cos x - \sin \,x = \sqrt 5 \left( {\frac{2}{{\sqrt 5 }}\cos x - \frac{1}{{\sqrt 5 }}\sin \,x} \right)\\\,\,\,\, = \sqrt 5 \left( {\cos \alpha \cos x - \sin \alpha \sin \,x} \right) = \sqrt 5 \cos \left( {x + \alpha } \right)\end{array}\),

với \(\cos \alpha  = \frac{2}{{\sqrt 5 }},\)\(\sin \alpha =\frac{1}{\sqrt{5}}\).

Khi đó, \( - \sqrt 5  \le y \le \sqrt 5 \)

Giá trị lớn nhất của hàm số là :  \(M = \sqrt 5 \).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com