Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết rặng hàm số \(y = f\left( x \right) = {x^3} + a{x^2} + bx + c\) đạt cực tiểu tại điểm \(x =

Câu hỏi số 283476:
Vận dụng

Biết rặng hàm số \(y = f\left( x \right) = {x^3} + a{x^2} + bx + c\) đạt cực tiểu tại điểm \(x = 1\), giá trị cực tiểu bằng \( - 3\) và đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2. Tính giá trị của hàm số tại \(x = 2\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:283476
Phương pháp giải

\(\left\{ \begin{array}{l}f'\left( 1 \right) = 0\\f\left( 1 \right) = 3\\f\left( 0 \right) = 2\end{array} \right.\)

Giải chi tiết

Cho \(x = 0 \Rightarrow y = c\), do đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2 nên \(c = 2\)

\(y = f\left( x \right) = {x^3} + a{x^2} + bx + 2 \Rightarrow y' = 3{x^2} + 2ax + b\)

Hàm số đạt cực tiểu tại \(x = 1 \Rightarrow y'\left( 1 \right) = 0 \Leftrightarrow 3 + 2a + b = 0 \Leftrightarrow 2a + b =  - 3\) (1)

Hàm số có giá trị cực tiểu bằng \( - 3 \Rightarrow y\left( 1 \right) =  - 3 \Leftrightarrow 1 + a + b + 2 =  - 3 \Leftrightarrow a + b =  - 6\) (2)

Từ (1), (2) suy ra  \(\left\{ \begin{array}{l}a = 3\\b =  - 9\end{array} \right.\,\,\,\,\, \Rightarrow y = f\left( x \right) = {x^3} + 3{x^2} - 9x + 2 \Rightarrow f\left( 2 \right) = {2^3} + {3.2^2} - 9.2 + 2 = 4\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com